

pytlas [image: travis] [https://travis-ci.org/atlassistant/pytlas] [image: cover] [https://codecov.io/gh/atlassistant/pytlas] [image: pypi] [https://badge.fury.io/py/pytlas] [image: Documentation Status] [https://pytlas.readthedocs.io/en/latest/?badge=latest] [image: license] [https://www.gnu.org/licenses/gpl-3.0] [image: donate] [https://liberapay.com/atlassistant/donate] [image: gitter] [https://gitter.im/pytlas/community]

pytlas is an open-source 🤖💬 python 3 assistant library built for
people and made to be super easy to setup and understand.

Its goal is to make easy to map natural language sentences to
python function handlers. It also manages a conversation with the help of
a finite state machine to enable back and forth communications between a user
and its agent.

Ever wanted to develop your own Alexa, Siri or Google Assistant and host it
yourself? This is possible!

Warning

pytlas being a library, it does not handle speech recognition and synthesis. It only handles text inputs. If you want it to be able to interact with the voice, you must write a Client which will call the library internally.

Contents

	Getting started
	Installation

	Usage

	Writing skills
	Training

	Handler

	Testing your skill

	Translations

	Metadata

	Request

	Hooks

	Settings

	Context

	Managing skills
	Using the CLI

	Using the SkillsManager class

	Core components
	Understanding

	Handling

	Conversing

	Settings

	Meta

	Migrating
	From 4.* to 5.0.0

Getting started

Here is the basic steps to get you started quickly with pytlas.

Contents

	Installation
	From pypi

	From source

	Choosing your interpreter

	Usage
	Using the pytlas CLI

	Using the library

Installation

There’s multiple way to install pytlas. You’re free to pick the one that better
fit your needs.

Note

Whatever installation you choose, you may need additional setup related to the interpreter you have decided to use. See Choosing your interpreter below for more information.

In the following examples, pytlas is installed with the extra require snips which is the official interpreter used by pytlas.

Warning

On a Raspberry PI, if you wish to install snips, you will have to follow the instructions here [https://github.com/snipsco/snips-nlu-parsers/tree/master/python#other-platforms] to install rust and setuptools_rust before running below commands.

From pypi

$ pip install pytlas[snips]

Note

The [snips] mention here represents an extra require and will download snips_nlu for you.

From source

$ git clone https://github.com/atlassistant/pytlas.git
$ cd pytlas
$ pip install -e .[snips]

Choosing your interpreter

In order to understand natural language, pytlas is backed by Interpreter
which may need additional installation steps.

snips

The official interpreter use the fantastic snips-nlu [https://github.com/snipsco/snips-nlu] python library.

Given the language you want your assistant to understand, it will need to
download additional resources. Fortunately, you don’t have to do it manually
since v5.0.0, pytlas will automatically try to download them when fitting the
interpreter with a language it doesn’t already know.

Usage

Using the pytlas CLI

pytlas include a basic CLI interface to interact with the system that you may
use when developping skills.

After cloning the git repository, this line will start the pytlas REPL by using
the configuration file example/pytlas.ini. It will load all data and fit the
engine before starting the interactive prompt.

$ cd example
$ pytlas -c pytlas.ini repl

Using the library

Here is a snippet which cover the basics of using pytlas inside your own
program:

pytlas is fairly easy to understand.
It will take raw user inputs, parse them and call appropriate handlers with
parsed slots values. It will also manage the conversation states so skills can
ask for user inputs if they need to.

from pytlas import Agent, intent, training
from pytlas.understanding.snips import SnipsInterpreter
import os

Here, we register a sentence as training data for the specified language
Those training sample are written using a simple DSL named chatl. It make it
back-end agnostic and is much more readable than raw dataset needed by NLU
engines.
#
Those data will be parsed by `pychatl` to output the correct dataset use for the fit
part.

@training('en')
def en_data(): return """
%[lights_on]
 turn the @[room]'s lights on would you
 turn lights on in the @[room] and @[room]
 lights on in @[room] and @[room] please
 turn on the lights in @[room]
 turn the lights on in @[room]
 enlight me in @[room]
 lights on in @[room] and [room]

~[basement]
 cellar

@[room](extensible=false)
 living room
 kitchen
 bedroom
 ~[basement]

"""

Here we are registering a function (with the intent decorator) as an handler
for the intent 'lights_on'.
#
So when a user input will be parsed as a 'lights_on' intent by the interpreter,
this handler will be called with a special `Request` object which contains the
agent (which triggered this handler) and the intent with its slots.

@intent('lights_on')
def on_intent_lights_on(request):

 # With the request object, we can communicate back with the `answer` method
 # or the `ask` method if we need more user input. Here we are joining on each
 # slot `value` because a slot can have multiple values.

 # This is where you should call the actual code managing the lights

 request.agent.answer('Turning lights on in %s' % ', '.join([v.value for v in request.intent.slot('room')]))

 # When using the `answer` method, you should call the `done` method as well. This is
 # useful because a skill could communicate multiple answers at different intervals
 # (ie. when fetching the information elsewhere).

 return request.agent.done()

class Client:
 """This client is used as a model for an agent. It will receive lifecycle events
 raised by the agent.
 """

 def on_answer(self, text, cards, **meta):
 print (text)

 def on_ask(self, slot, text, choices, **meta):
 print (text)

if __name__ == '__main__':
 # The last piece is the `Interpreter`. This is the part responsible for human
 # language parsing. It parses raw human sentences into something more useful for
 # the program.

 interpreter = SnipsInterpreter('en', cache_directory=os.path.join(os.path.dirname(__file__), 'cache'))

 # Train the interpreter using training data register with the `training` decorator
 # or `pytlas.training.register` function.

 interpreter.fit_from_skill_data()

 # The `Agent` uses the model given to call appropriate lifecycle hooks.

 agent = Agent(interpreter, model=Client())

 # With this next line, this is what happenned:
 #
 # - The message is parsed by the `SnipsInterpreter`
 # - A 'lights_on' intents is retrieved and contains 'kitchen' and 'bedroom' as the 'room' slot values
 # - Since the `Agent` is asleep, it will transition to the 'lights_on' state immediately
 # - Transitioning to this state call the appropriate handler (at the beginning of this file)
 # - 'Turning lights on in kitchen, bedroom' is printed to the terminal by the `Client.on_answer` defined above
 # - `done` is called by the skill so the agent transitions back to the 'asleep' state

 agent.parse('turn the lights on in kitchen and bedroom please')

Writing skills

Writing a skill for pytlas is as easy as creating a python module, writing
some code that use pytlas members and putting it in the skills directory
loaded by your instance (when Using the pytlas CLI).

There’s only two parts that your skill should always define to make it work
correctly, Training and Handler.

Note

For the rest of this section, I assumed the following directory structure:

- skills/
 - your_awesome_skill/
 - __init__.py

and we’re going to work directly in the __init__.py file.

Contents

	Training
	Format

	Builtin intents

	Best practices

	Handler
	Getting started

	Retrieving slots

	Answering

	Asking

	Builtin intents

	Testing your skill
	Writing tests

	Launching tests

	Translations

	Metadata

	Request

	Hooks

	Settings

	Context

Training

You should always start by defining example sentences of how a user might
trigger your code. The Interpreter will use them to train and extract
meaningful content on unknown inputs.

It allows your skill to define which sentences will trigger specific intents so
you must provide enough data for it to understand patterns.

Note

You should define training data in all languages that you wish to support in your skill.

Warning

At runtime, all trainings will be merged into a single dictionary. So don’t forget
to namespace your intents and entities when that makes sense.

Format

It uses a specific interpreter agnostic format called chatl [https://github.com/atlassistant/chatl] that I also maintain. Its goal is to be easy to write and read by humans.

This tiny DSL will be transformed to a format understandable by your
interpreter of choice.

So, going back to our skill, let’s define some training data:

from pytlas import training

@training('en')
def my_data(): return """
%[lights_on]
 turn the @[room]'s lights on would you
 turn lights on in the @[room]
 lights on in @[room] please
 turn on the lights in @[room]
 turn the lights on in @[room]
 enlight me in @[room]

%[lights_off]
 turn the @[room]'s lights off would you
 turn lights off in the @[room]
 lights off in @[room] please
 turn off the lights in @[room]
 turn the lights off in @[room]

~[basement]
 cellar

@[room](extensible=false)
 living room
 kitchen
 bedroom
 ~[basement]
"""

Where %[lights_on] and %[lights_off] define intents, @[room] is an
entity and ~[basement] is a synonym.

Builtin intents

pytlas does not ship with training data at all. There’s currently one intent
which needs data: __cancel__. You should provide training data to recognize
this intent, something as simple as this:

from pytlas import training

@training('en')
def en_data(): return """
%[__cancel__]
 cancel
 abandon the command
"""

Best practices

Here is some thoughts about making great training data:

	Use lowercase

	Avoid punctuation

	Give at least 10 sentences per intent

	Provide variety in your samples (with or without slots defined for example)

	Use optional synonyms (with ~[your synonym?] in intents)

Handler

Handlers are python code that will be executed when an intent has been
recognized.

Your handler will received one and only argument, a Request instance
which represents the agent and the context for which your handler is being
called.

Getting started

Note

The agent in the Request is a proxy which maps to an Agent so you have access to everything it exposes. Why a proxy you may ask? Because when the action is cancelled by the user, the request is invalidated so any call through the proxy will be dismissed.

Here the basic code you need to have. Calling request.agent.done is mandatory
to inform the agent that it should returns to its asleep state.

from pytlas import intent

Remember we have defined this intent in the training section with %[lights_on]

@intent('lights_on')
def my_handler(request):
 return request.agent.done()

Retrieving slots

Remember, slots are like function arguments that has been extracted by the
Interpreter.

Note

In a slot, the value property will give you back a representation of what have been parsed by the NLU engine in a meaningful way:

	for durations, it will returns a dateutil.relativedelta object

	for moneys and temperatures, it returns a pytlas.understanding.UnitValue

	for percentages, a float between 0 and 1

	for exact time, a datetime.datetime object,

	for time ranges, a tuple of datetime.datetime objects representing the lower and upper bounds

	for anything else, a string

from pytlas import intent

Remember we have defined a slot @[room] in training sentences

@intent('lights_on')
def my_handler(request):
 rooms = request.intent.slot('room')

 # When you retrieve a slot, it's always a list since you can have multiple occurences of an entity in the same sentence

 first = rooms.first()
 last = rooms.last()

 # first and last are SlotValue object, if you want to retrieve their value you should use the `value` property

 return request.agent.done()

Answering

When you need to show something to the user, you should use the answer
method.

from pytlas import intent

@intent('lights_on')
def my_handler(request):
 room = request.intent.slot('room').first().value

 # Turn the lights on !

 # And say it to the user

 request.agent.answer('Turning lights on in %s' % room)

 # You can also give the text parameter an array of strings.
 # If you do so, pytlas will choose one item randomly. This make it easy
 # to provide some variations for your skill handler.
 # request.agent.answer(['Turning lights on in %s' % room, 'Alright, lights on in %s' % room])

 return request.agent.done()

Asking

When you need some informations or slot have not been extracted in the original
sentence, you can ask the user to fill them. Once filled by the user, your
handler will be called again with the updated slots.

from pytlas import intent

@intent('lights_on')
def my_handler(request):
 room = request.intent.slot('room')

 if not room:
 # Here we ask the user to fill the 'room' slot. That's the only case when you don't
 # need to call done yourself.
 # Like in the answer text argument, the ask text argument also accept an array of strings and
 # pytlas will choose one randomly to provide to the user.
 return request.agent.ask('room', 'Which room?')

 request.agent.answer('Turning lights on in %s' % room)

 return request.agent.done()

Builtin intents

For now, there’s only one builtin intent that you want to handle which is
__fallback__. It will be called if an intent has been recognized but no handler
have been found to fulfill the request.

Testing your skill

Once you have developed your skill, you should test it. You can launch the
pytlas repl and test it manually or (the prefered approach) use some code to
trigger agent state and make assertions about how your skill has answered.

In order to help you do the later approach, there’s some utilities in the
pytlas package itself.

Let’s consider this tiny skill:

from pytlas import training, intent

@training('en')
def en_data(): return """
%[lights_on]
 turn the @[room]'s lights on would you
 turn lights on in the @[room]
 lights on in @[room] please
 turn on the lights in @[room]
 turn the lights on in @[room]
 enlight me in @[room]

~[basement]
 cellar

@[room](extensible=false)
 living room
 kitchen
 bedroom
 ~[basement]
"""

@intent('lights_on')
def on_lights_on(r):
 rooms = req.intent.slot('room')

 if not rooms:
 return req.agent.ask('room', 'For which rooms?')

 req.agent.answer('Turning lights on in %s' % ', '.join(room.value for room in rooms))

 return req.agent.done()

Writing tests

In order to make assertions, pytlas use the excellent sure [https://github.com/gabrielfalcao/sure] library so let’s use them here too.

Now, let’s create a file test_lights.py next to your skill python file.

Warning

Since create_skill_agent uses the SnipsInterpreter, you must have snips-nlu installed and language resources too. See snips for more informations.

from sure import expect
from pytlas.testing import create_skill_agent
import os

Let's instantiate an agent specifically designed to make assertions easier.
It will fit the data with the SnipsInterpreter so you have pretty much what
will be used in a real case scenario.
agent = create_skill_agent(os.path.dirname(__file__))

class TestLights:

 def setup(self):
 # Between each tests, resets the model mock so calls are dismissed and we
 # start on a fresh state.
 agent.model.reset()

 def test_it_should_answer_directly_when_room_is_given(self):
 agent.parse('Turn the lights on in the kitchen please')

 # Retrieve the last call on on_answer (you can also give an integer if you have multiple calls in your skill).
 # Here `agent.model.on_answer` is a `pytlas.testing.ModelMock` with some utilities to make assertions.
 on_answer = agent.model.on_answer.get_call()

 # And make assertions on argument names
 expect(on_answer.text).to.equal('Turning lights on in kitchen')

 def test_it_should_ask_for_room_when_no_one_is_given(self):
 agent.parse('Turn the lights on')

 on_ask = agent.model.on_ask.get_call()

 expect(on_ask.slot).to.equal('room')
 expect(on_ask.text).to.equal('For which rooms?')

 agent.parse('In the bedroom')

 on_answer = agent.model.on_answer.get_call()

 expect(on_answer.text).to.equal('Turning lights on in bedroom')

 # Since it inherits from `MagicMock`, you can use all methods to make assertions
 agent.model.on_done.assert_called()

Launching tests

In order to launch tests, pytlas uses nose [https://nose.readthedocs.io/en/latest/], so you may use it to test your skill too.

In your skill directory, just launch the following command:

$ python -m nose
..
--
Ran 2 tests in 0.016s

OK

Translations

Translating a skill is pretty easy. It works the same way as training data.
You’ll just have to use the decorator on a method which returns a dictionary
representing keys and associated translations.

from pytlas import translations, intent

@translations('fr')
def my_translations(): return {
 'Turning lights on in %s': "J'allume les lumières dans %s",
}

Training data are not shown here

@intent('lights_on')
def my_handler(request):
 room = request.intent.slot('room').first().value

 # Do something

 # Here, just use the `request._` to translate the string
 # If you wish to localize a date, we got you covered with the `request._d`

 request.agent.answer(request._('Turning lights on in %s') % room)

 return request.agent.done()

Metadata

Metadata are entirely optional and are mostly use by the tiny skill manager of
pytlas to list loaded skills with associated informations.

As a best practice however, you must include it in your skill to provide at
least a description of what your skill do and what settings are expected.

from pytlas import meta, translations

Here the function register will be called with a function used to translate
a string.
If you prefer, you can also returns a `pytlas.skill.Meta` instance and use `pytlas.skill.Setting` instance in the `settings` property.

@meta()
def register(_): return {
 'name': _('lights'),
 'description': _('Control some lights'),
 'version': '1.0.0',
 'author': 'Julien LEICHER',
 'settings': [
 'lights.setting_one', # represents the 'setting_one' key in the 'lights' section
],
}

@translations('fr')
def fr_translations(): return {
 'lights': 'lumières',
 'Control some lights': 'Contrôle des lumières',
}

Request

It’s the object that your handler will receive as it’s only argument.

	
class pytlas.conversing.request.Request(agent: Agent, intent: pytlas.understanding.intent.Intent, module_translations: Dict[str, str] = None)

	Tiny wrapper which represents a request sent to a skill handler.

	
_(text: str) → str

	Gets the translated value of the given text.

	Parameters

	text (str) – Text to translate

	Returns

	Translated text or source text if no translation has been found

	Return type

	str

	
_d(date: datetime.datetime, date_only=False, time_only=False, **options) → str

	Helper to localize given date using the agent current language.

	Parameters

	
	date (datetime) – Date to format accordingly to the user language

	date_only (bool) – Only format the date part

	time_only (bool) – Only format the time part

	options (dict) – Additional options such as format to give to Babel

	Returns

	Localized string representing the date

	Return type

	str

	
agent = None

	Agent proxy used to communicate back with the agent

	
id = None

	Unique id of the request

	
intent = None

	Intent associated with the request

	
lang = None

	Request language as extracted from the agent

Hooks

Hooks represents lifecycle events your skill can listen to. At the moment, only
2 hooks are available as decorators.

from pytlas import on_agent_created, on_agent_destroyed

@on_agent_created()
def do_some_setup_for(agent):
 # It will be called on agent startup so you have a change to do some
 # stuff in your skill.
 print (agent.meta)

@on_agent_destroyed()
def do_some_cleanup_for(agent):
 # It will be called upon agent destruction.
 print ('Some cleanup stuff could go here!')

Settings

Settings provides a facility to enable developers to retrieve settings value.

The pytlas.settings module exposes a SettingsStore class and a global
instance of this class in its CONFIG property.

The SettingsStore read settings from 3 sources:

	A ConfigParser [https://docs.python.org/3/library/configparser.html] instance

	System environment variables

	additional_lookup property used at construction

So when you request a value from a store object for a section pytlas and
a key my_setting, it will first try to find a key in additional_lookup
matching PYTLAS_MY_SETTING, if not found, it will look for the same key in
the OS environment variables and if it’s still can’t find a match, it will look
in the ConfigParser instance for the section and the key provided.

This order make it easy to override config file settings by using environment
variables or, as seen below, using agent metadata.

The store also provides a wide range of methods to retrieve configuration
values casted to a particular type.

from pytlas import intent
from pytlas.settings import CONFIG

Load a setting file
CONFIG.load_from_file('file/path/pytlas.ini')

Get a string
CONFIG.get('openweather_key', 'a default value', section='pytlas.weather')

If you have exported the env PYTLAS_WEATHER_OPENWEATHER_KEY=apikey, then this
function will returns "apikey"

Arguments are the same for other helpers
CONFIG.getint
CONFIG.getfloat
CONFIG.getlist
CONFIG.getbool
CONFIG.getpath

You can also programatically set a setting
CONFIG.set('a key', 'your value', section='pytlas.weather')

@intent('my_intent')
def my_handler(r):
 # Inside an handler, you can use the `agent.settings` property which is a `SettingsStore`
 # instance extending the global one with the agent metadata.
 #
 # It is useful to allow agent to override some settings such as api keys.
 #
 # The following line will returns the settings from agent meta first, if not found,
 # from env variables and if still not found, from the loaded config file.
 r.agent.settings.get('openweather_key', 'a default value', section='pytlas.weather')

Context

Context are important when dealing with complex skills. It allows you to define
in which case your intent should be recognized.

In order to declare a context, you just to have to define your intent with
valid_context/your_intent and use the request.agent.context method to
switch at runtime. Here is an example.

from pytlas import training, intent

@training('en')
def en_training(): return """
%[start_intent]
 start something right now
 please start a context
 let's dance

%[started_intent/say]
 say something
 talk to me
"""

@intent('start_intent')
def start_handler(request):
 # This line will switch to the context `started_intent` which means that
 # the interpreter will now be able to recognize the `started_intent/say` intent
 # we define earlier.
 #
 # Till we switch to this context, `started_intent/say` could not be triggered.
 request.agent.context('started_intent')

 return request.agent.done()

@intent('started_intent/say')
def say(request)
 request.agent.answer('Hey!')

 # Switch to the root context which is the None one so this handler could not be triggered anymore
 request.agent.context(None)

 return request.agent.done()

You can also override builtin intents such as __fallback__ and __cancel__ for
your context.
#
Here the fallback means every sentence not recognized by the interpreter when
in the `started_intent` context will trigger this handler.
@intent('started_intent/__fallback__')
def fallback(request):
 request.agent.answer('Looks like you said %s' % request.intent.slot('text').first().value)

 return request.agent.done()

Managing skills

The pytlas SkillsManager class make it easy to add, update and remove skills
to and from your pytlas skills directory.

Note

Since it uses git internally to manage skills retrieval and updates, the command should be available in your environment when executing all commands listed below.

Using the CLI

Listing

List all loaded skills metadata and tries to translate them.

$ pytlas skills list

Installing

Install one or more skills from a git repository. If you use a relative name
such as owner/repo, it will be resolved as https://github.com/owner/repo
but you can use an absolute URL such as https://gitlab.com/owner/repo.

$ pytlas skills add atlassistant/pytlas-weather atlassistant/pytlas-help

Updating

Updates one, more, or all skills.

$ pytlas skills update atlassistant/pytlas-weather atlassistant/pytlas-help
$ pytlas skills update # Will try to update all skills in the skills directory

Removing

Remove one or more skills.

$ pytlas skills remove atlassistant/pytlas-weather atlassistant/pytlas-help

Using the SkillsManager class

	
class pytlas.supporting.SkillsManager(directory: str, lang='en', default_git_url='https://github.com/', handlers_store: pytlas.handling.skill.HandlersStore = None, metas_store: pytlas.handling.skill.MetasStore = None)

	The SkillsManager handles skill installation, updates, listing and removal.
It can be used with the built-in CLI or used as a library.

	
get() → List[pytlas.handling.skill.Meta]

	Retrieve currently loaded skills. That means you should first start to
imports them by using the pytlas.handling.importers namespace.

	Returns

	Skills loaded.

	Return type

	list of Meta

	
install(*names) → Tuple[List[str], List[str]]

	Install or update given skill names.

	Parameters

	names (list of str) – Skills to install/update

	Returns

	Respectively, successful installs and failed ones

	Return type

	(list of str, list of str)

	
uninstall(*names) → Tuple[List[str], List[str]]

	Uninstall given skill names.

	Parameters

	names (list of str) – Skills to remove

	Returns

	Respectively, successful removes and failed ones

	Return type

	(list of str, list of str)

	
update(*names) → Tuple[List[str], List[str]]

	Update given skill names.

	Parameters

	names (list of str) – Skills to update, if no one is given, all skills will be updated

	Returns

	Respectively, successful updates and failed ones

	Return type

	(list of str, list of str)

Core components

In order to develop for pytlas, you should understand how core components fit
together to make it understand and call your handlers. If you only want to
develop your own skills, you can omit this section and go to Writing skills.

The general command flow looks like this:

	The user says will it rain tomorrow,

	The user agent uses its internal interpreter to extract the user intent and slots based on its training data,

	The agent call the skill handler registered for this specific intent if any,

	The skill has now the opportunity to answer or ask something to the user in order to fulfil his request and the agent will use the attached client to communicate back with the user.

Going deeper

	Understanding
	Interpreter

	Trainings store

	Handling
	Handlers store

	Metas store

	Translations store

	Conversing
	Agent

	Client

	Settings
	Settings store

	Meta

Understanding

The understanding domain groups all thing related to the understanding of user
intents.

Interpreter

Interpreter allow pytlas to categorize user intents and to extract slots from
raw text. Whatever interpreter you decide to use, it will need training data to
be able to understand what’s the user intent behind an input sentence.

Intent

An intent represents a user intention.

For example, when I say what’s the weather like?, my intent is something as
get weather. When I say please tell me what’s the weather like today, it
maps to the same intent get weather.

Slot

A slot is like a parameter value for a function. It represents an entity in the
context of an intent.

So when I say what’s the weather like in Paris?, my intent is get weather
and the slot city should be Paris.

Implementing a custom interpreter

If you wish to implement your own interpreter, you must at least extends from
pytlas.interpreters.Interpreter and implement those methods.

Note

When creating SlotValue instance to represent a slot, always remember to sets a value in a meaningfull python representation. See Retrieving slots to see what’s expected by developers.

	
Interpreter.fit(data: dict) → None

	Fit the interpreter with given data.

	Parameters

	data (dict) – Training data

	
Interpreter.parse(msg: str, scopes: List[str] = None) → List[pytlas.understanding.intent.Intent]

	Parses the given raw message and returns parsed intents.

	Parameters

	
	msg (str) – Message to parse

	scopes (list of str) – Optional list of scopes used to restrict parsed intents

	Returns

	Parsed intents

	Return type

	list of Intent

	
Interpreter.parse_slot(intent: str, slot: str, msg: str) → List[pytlas.understanding.slot.SlotValue]

	Parses the given raw message to extract a slot matching given criterias.

	Parameters

	
	intent (str) – Name of the current intent

	slot (str) – Name of the current slot to extract

	msg (str) – Raw message to parse

	Returns

	Slot values extracted

	Return type

	list of SlotValue

Trainings store

All training data are registered on a TrainingsStore instance, mostly using
the training decorator.

	
class pytlas.understanding.TrainingsStore(data: dict = None)

	Contains training data.

	
all(lang: str) → Dict[str, str]

	Retrieve all training data in the given language.

It will evaluate all register functions for the given language.

	Parameters

	lang (str) – Language to get

	Returns

	Dictionary with package name as key and training DSL string as value

	Return type

	dict

	
get(package: str, lang: str) → str

	Retrieve training data for a particular package in the given language.

It will evaluate all register functions for the given language.

	Parameters

	
	package (str) – Pacjage

	lang (str) – Language to get

	Returns

	Training data

	Return type

	str

	
register(lang: str, func: Callable, package: str = None) → None

	Register training data written using the chatl DSL language into the system.

	Parameters

	
	lang (str) – Language for which the training has been made for

	func (func) – Function to call to return training data written using the chatl DSL

	package (str) – Optional package name (usually __package__), if not given pytlas
will try to determine it based on the call stack

Handling

The handling domain enables skills to register their data such as meta,
handlers and translations.

This is where you, as a developer, will spend most of your time, see
Writing skills for more info.

Basically, you will just declare a python module and use pytlas decorators
to register some specific components on the running environment.

Handlers store

Handlers are register on an instance of an HandlersStore, mostly using the
intent decorator.

	
class pytlas.handling.HandlersStore(data: dict = None)

	Holds skill handlers.

	
get(intent_name: str) → Callable

	Try to retrieve the handler associated with a particular intent.

	Parameters

	intent_name (str) – Intent to search

	Returns

	Handler if found, None otherwise

	Return type

	callable

	
register(intent_name: str, func: Callable, package: str = None) → None

	Register an intent handler.

	Parameters

	
	intent_name (str) – Name of the intent to handle

	func (callable) – Handler to be called when the intent is triggered

	package (str) – Optional package name (usually __package__), if not given
pytlas will try to determine it based on the call stack

Metas store

Skill meta are registered on a MetasStore, mostly using the meta decorator.

	
class pytlas.handling.MetasStore(translations_store: pytlas.handling.localization.TranslationsStore = None, data: dict = None)

	Hold skill metadatas.

	
all(lang: str) → List[pytlas.handling.skill.Meta]

	Retrieve all registered meta in the given language.

	Parameters

	lang (str) – Language to use

	Returns

	Registered Meta

	Return type

	list of Meta

	
get(package: str, lang: str) → pytlas.handling.skill.Meta

	Retrieve a meta for the given package.

	Parameters

	
	package (str) – Package name to retrieve

	lang (str) – Lang for which you want to retrieve the skill Meta

	Returns

	Meta instance or None if not found

	Return type

	Meta

	
register(func: Callable, package: str = None) → None

	Register skill package metadata

	Parameters

	
	func (func) – Function which will be called with a function to translate
strings using the package translations at runtime

	package (str) – Optional package name (usually __package__), if not given
pytlas will try to determine it based on the call stack

Translations store

Translations are registered on a TranslationsStore instance, mostly using the
translations decorator.

	
class pytlas.handling.TranslationsStore(data: dict = None)

	Translations store which holds all translations used by skills.

	
all(lang: str) → Dict[str, Dict[str, str]]

	Retrieve all translations for all packages in the given language.

	Parameters

	lang (str) – Language for which we want translations

	Returns

	Dictionary of package => translations dict in the given language

	Return type

	dict

	
get(package: str, lang: str) → Dict[str, str]

	Retrieve all translations for a particular package.

	Parameters

	
	package (str) – Name of the package

	lang (str) – Language to retrieve

	Returns

	Translations dictionary

	Return type

	dict

	
register(lang: str, func: Callable, package: str = None) → None

	Register translations into the store.

	Parameters

	
	lang (str) – Language being loaded

	func (func) – Function to call to load a dictionary of translations

	package (str) – Optional package name (usually __package__), if not given
pytlas will try to determine it based on the call stack

Conversing

The conversing domain use the Understanding and Handling domains
to trigger python actions from parsed intents and maintain a conversation
state.

Agent

An agent represent the interface between the user and loaded skills. It
maintain the conversation state and use an underlying interpreter to understand
the user.

The agent is the entry point which will take raw user inputs with its parse
method and call loaded handlers as needed.

Entry point

	
Agent.parse(msg: str, **meta) → None

	Parse a raw message.

The interpreter will be used to determine which intent(s) has been formulated
by the user and the state machine will move to the appropriate state calling
the right skill handler.

It will also handle some specific intents such as the cancel one and ask states.

	Parameters

	
	msg (str) – Raw message to parse

	meta (dict) – Optional metadata to add to the request object

Note

More information on Meta.

When an intent has been found, it will try to find an handler for this specific
intent and call it. It will then manage the conversation, handle cancel and
fallback intents and communicate back to the user using its internal
Client.

From a skill

From a skill perspective, here are the method you will use.

	
Agent.answer(text: str, cards: Union[pytlas.handling.card.Card, List[pytlas.handling.card.Card]] = None, **meta) → None

	Answer something to the user.

	Parameters

	
	text (str, list) – Text to show to the user

	cards (list, Card) – List of Card to show if any

	meta (dict) – Any additional data to pass to the handler

	
Agent.ask(slot: str, text: Union[str, List[str]], choices: List[str] = None, **meta) → None

	Ask something to the user.

	Parameters

	
	slot (str) – Name of the slot asked for

	text (str, list) – Text to show to the user

	choices (list) – List of available choices

	meta (dict) – Any additional data to pass to the handler

	
Agent.done(require_input=False) → None

	Done should be called by skills when they are done with their stuff. It enables
threaded scenarii. When asking something to the user, you should not call this method
since ask end the skill immediately.

	Parameters

	require_input (bool) – True if additional informations are needed (mostly
use to trigger client input)

	
Agent.context(context_name: str) → None

	Switch the agent to the given context name. It will populates the list of reachable
scopes so the interpreter will only parse intents defined in this scope.

	Parameters

	context_name (str) – Name of the context to switch to (None represents the root one)

Client

A client is a thin layer used by an agent to communicate with the user. It can
be anything such as a tiny CLI (as the one provided), a WebSocket server or a
connected speaker.

When provided to an agent (using its model property), some specific members
will be called by the agent on specific lifecycle events:

	
on_answer(text, cards, raw_text, **meta)

	Called when the skill answer something to the user. cards is a list of pytlas.Card which represents informations that should be presented to the user if possible. Your client should always handle the text property at least.

	
on_ask(slot, text, choices, raw_text, **meta)

	Called when the skill need some user inputs for the given slot. choices if set, represents a list of available choices.

	
on_thinking()

	Called when the agent has called a skill which is handling the request.

	
on_done(require_input)

	Called when a skill has done its work and the agent is going back to the asleep state.

	
on_context(context_name)

	Called when the agent context has changed.

Settings

Settings enables all parts of pytlas to read config data and is already
covered in Settings.

Settings store

The settings store holds config data. The global store is available as
pytlas.settings.CONFIG property.

	
class pytlas.settings.SettingsStore(config: configparser.ConfigParser = None, additional_lookup: Dict[str, object] = None)

	Hold application settings with an internal ConfigParser instance. It provides
a lot of utility methods to convert settings to particular representations.

Why? You may ask. Because it starts by looking for the given settings into
an optional additional lookup dict, if its not found, it will look in the system
environment and finally, it will use the ConfigParser instance which is probably
loaded from a configuration file.

And since everything in the env are considered as strings, you can use the provided
methods to make things easier.

	
get(setting: str, default: str = None, section='pytlas') → str

	Gets a setting value, if an environment variable is defined, it will take
precedence over the value hold in the inner config object.

For example, if you got a setting ‘lang’ in the ‘pytlas’ section, defining the
environment varialbe PYTLAS_LANG will take precedence.

	Parameters

	
	setting (str) – Name of the configuration option

	default (str) – Fallback value

	section (str) – Section to look in

	Returns

	Value of the setting

	Return type

	str

	
getbool(setting: str, default=False, section='pytlas') → bool

	Gets a boolean value for a setting. It uses the get under the hood so the same
rules applies.

	Parameters

	
	setting (str) – Name of the configuration option

	default (bool) – Fallback value

	section (str) – Section to look in

	Returns

	Value of the setting

	Return type

	bool

	
getfloat(setting: str, default=0.0, section='pytlas') → float

	Gets a float value for a setting. It uses the get under the hood so the same
rules applies.

	Parameters

	
	setting (str) – Name of the configuration option

	default (float) – Fallback value

	section (str) – Section to look in

	Returns

	Value of the setting

	Return type

	float

	
getint(setting: str, default=0, section='pytlas') → int

	Gets a int value for a setting. It uses the get under the hood so the same
rules applies.

	Parameters

	
	setting (str) – Name of the configuration option

	default (int) – Fallback value

	section (str) – Section to look in

	Returns

	Value of the setting

	Return type

	int

	
getlist(setting: str, default=[], section='pytlas') → list

	Gets a list for a setting. It will split values separated by a comma.

It uses the get under the hood so the same rules applies.

	Parameters

	
	setting (str) – Name of the configuration option

	default (list) – Fallback value

	section (str) – Section to look in

	Returns

	Value of the setting

	Return type

	list

	
getpath(setting: str, default: str = None, section='pytlas') → str

	Gets an absolute path for a setting. If the value is not an absolute
path, it will be resolved based on the loaded config file directory.

It uses the get under the hood so the same rules applies.

	Parameters

	
	setting (str) – Name of the configuration option

	default (str) – Fallback value

	section (str) – Section to look in

	Returns

	Value of the setting

	Return type

	str

	
load_from_file(path: str) → None

	Load settings from a file.

	Parameters

	path (str) – Name of the file to read

	
set(setting: str, value: object, section='pytlas') → None

	Sets a setting value in the _data dictionary so it will take
precedence over all the others.

Value will be stringified by this method (since all value can be read from env variables).

	Parameters

	
	setting (str) – Setting key to write

	value (object) – Value to write

	section (str) – Section to write to

	
to_dict() → Dict[str, str]

	Gets a flat dictionary representation of this store (combining
settings from the config and the ones in additional_data).

Each keys will be converted to an env one so it can be used in an agent
meta for example.

	Returns

	Flat dictionary representing this store

	Return type

	dict

	
write_to_file(path: str) → None

	Write this settings store to a file.

	Parameters

	path (str) – Path to a file to store the resut.

Meta

When working with pytlas, you may find metadata in different places.

Especially in:

	The agent __init__, answer, ask and parse methods,

	The Intent class

Those metadata represents any non consumed keyword parameters. They are pretty
useful when you need to provide additional information but should never be
considered mandatory.

Here is a code example for a skill:

from pytlas import intent

@intent('get_weather')
def on_weather(r):
 lat = r.intent.meta.get('latitude')
 lng = r.intent.meta.get('longitude')

 if lat and lng:
 # Search using the user position
 else:
 name = r.intent.slot('city').first().value

 if not name:
 return r.agent.ask('city', 'For which city?')

 # Search using a city name

 return r.agent.done()

With this definition, if I call the parse method with some meta, it will
handle my position, else, it will fallback to search the weather for a city:

from pytlas import Agent

agent = Agent() # In the real world, you should provide an interpreter and a client

Meta here will be added to the parsed intent
agent.parse("What's the weather like", latitude=49, longitude=1)

Will fallback to the city one
agent.parse("What's the weather like in Paris")

Migrating

Sometimes, things should be broken for the well being of the library. This is
where you will find such changes to help you update your code accordingly.

From 4.* to 5.0.0

Version 5.0.0 is a big overhaul of how things are layed out in the library and
as such introduce a lot of breaking changes if you use the library directly.

If all you do is from pytlas import training, translations, intent, meta,
then you’re good to go, nothing has changed, otherwise, keep reading.

The new structure follow a more domain centric approach:

	understanding: Contains interpreters, intent, slots and training stuff

	handling: Contains handlers, localization, importers and related stuff

	conversing: Contains agent and request

	supporting: Contains the skills manager

	testing: Contains tests related stuff

The pytlas root module now only exposes the most common stuff to make more
easy for newcomers to use the library. Each submodules also has a public
api represented by the __init__.py file.

Access to settings

WAS
from pytlas.settings import get, getbool # And other getters

NOW
from pytlas.settings import CONFIG # Represents the global configuration

And access it like this
CONFIG.get CONFIG.getbool

From a skill, you can now use the agent settings which inherits from the global
configuration and override keys with the agent metadata.
@intent('my-skill')
def my_skill(request):
 request.agent.settings.get('api', section='openweather')

Registering without decorators

Since the prefered approach is to use the decorators, direct register are not
exposed in the main __init__.py and should be imported only when needed.

WAS
from pytlas.skill import register as register_intent, register_metadata
from pytlas.localization import register as register_translations
from pytlas.training import register as register_training
from pytlas.hooks import register as register_hook
DOES NOT EXIST ANYMORE, use NOW imports
from pytlas import register_intent, register_metadata, register_translations, register_training, register_hook

NOW
from pytlas.handling.skill import GLOBAL_HANDLERS, GLOBAL_METAS
from pytlas.handling.hooks import GLOBAL_HOOKS
from pytlas.handling.localization import GLOBAL_TRANSLATIONS
from pytlas.understanding.training import GLOBAL_TRAININGS

And use the `register` method on those global stores (ie. GLOBAL_HANDLERS.register)

Utils

Utilities methods have been splitted by functions:

	pytlas.datautils: Data related helpers

	pytlas.ioutils: Input/output helpers

	pytlas.pkgutils: Package related helpers

and read_file as been updated:

WAS
from pytlas.utils import read_file
read_file('data.dsl', relative_to_file=__file__)

NOW
from pytlas.ioutils import read_file
relative_to_file is now relative_to and accept a folder too
read_file('data.dsl', relative_to=__file__)

Testing

ModelMock.get_call() now returns the last call by default.

Managing skills from code

WAS
from pytlas.pam import get_loaded_skills, install_skills, update_skills, uninstall_skills

NOW
from pytlas.supporting import SkillsManager

s = SkillsManager('your_skills_directory')
loaded_skills = s.get()
s.install('atlassistant/pytlas-weather', 'another/skill')
s.update('atlassistant/pytlas-weather', 'another/skill')
s.uninstall('atlassistant/pytlas-weather', 'another/skill')

Index

 _
 | A
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	_() (pytlas.conversing.request.Request method)

 	
 	_d() (pytlas.conversing.request.Request method)

A

 	
 	agent (pytlas.conversing.request.Request attribute)

 	all() (pytlas.handling.MetasStore method)

 	(pytlas.handling.TranslationsStore method)

 	(pytlas.understanding.TrainingsStore method)

 	
 	answer() (pytlas.conversing.Agent method)

 	ask() (pytlas.conversing.Agent method)

C

 	
 	context() (pytlas.conversing.Agent method)

D

 	
 	done() (pytlas.conversing.Agent method)

F

 	
 	fit() (pytlas.understanding.Interpreter method)

G

 	
 	get() (pytlas.handling.HandlersStore method)

 	(pytlas.handling.MetasStore method)

 	(pytlas.handling.TranslationsStore method)

 	(pytlas.settings.SettingsStore method)

 	(pytlas.supporting.SkillsManager method)

 	(pytlas.understanding.TrainingsStore method)

 	
 	getbool() (pytlas.settings.SettingsStore method)

 	getfloat() (pytlas.settings.SettingsStore method)

 	getint() (pytlas.settings.SettingsStore method)

 	getlist() (pytlas.settings.SettingsStore method)

 	getpath() (pytlas.settings.SettingsStore method)

H

 	
 	HandlersStore (class in pytlas.handling)

I

 	
 	id (pytlas.conversing.request.Request attribute)

 	
 	install() (pytlas.supporting.SkillsManager method)

 	intent (pytlas.conversing.request.Request attribute)

L

 	
 	lang (pytlas.conversing.request.Request attribute)

 	
 	load_from_file() (pytlas.settings.SettingsStore method)

M

 	
 	MetasStore (class in pytlas.handling)

O

 	
 	on_answer() (built-in function)

 	on_ask() (built-in function)

 	
 	on_context() (built-in function)

 	on_done() (built-in function)

 	on_thinking() (built-in function)

P

 	
 	parse() (pytlas.conversing.Agent method)

 	(pytlas.understanding.Interpreter method)

 	
 	parse_slot() (pytlas.understanding.Interpreter method)

R

 	
 	register() (pytlas.handling.HandlersStore method)

 	(pytlas.handling.MetasStore method)

 	(pytlas.handling.TranslationsStore method)

 	(pytlas.understanding.TrainingsStore method)

 	
 	Request (class in pytlas.conversing.request)

S

 	
 	set() (pytlas.settings.SettingsStore method)

 	
 	SettingsStore (class in pytlas.settings)

 	SkillsManager (class in pytlas.supporting)

T

 	
 	to_dict() (pytlas.settings.SettingsStore method)

 	
 	TrainingsStore (class in pytlas.understanding)

 	TranslationsStore (class in pytlas.handling)

U

 	
 	uninstall() (pytlas.supporting.SkillsManager method)

 	
 	update() (pytlas.supporting.SkillsManager method)

W

 	
 	write_to_file() (pytlas.settings.SettingsStore method)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 pytlas

 		
 Getting started

 		
 Installation

 		
 From pypi

 		
 From source

 		
 Choosing your interpreter

 		
 Usage

 		
 Using the pytlas CLI

 		
 Using the library

 		
 Writing skills

 		
 Training

 		
 Format

 		
 Builtin intents

 		
 Best practices

 		
 Handler

 		
 Getting started

 		
 Retrieving slots

 		
 Answering

 		
 Asking

 		
 Builtin intents

 		
 Testing your skill

 		
 Writing tests

 		
 Launching tests

 		
 Translations

 		
 Metadata

 		
 Request

 		
 Hooks

 		
 Settings

 		
 Context

 		
 Managing skills

 		
 Using the CLI

 		
 Listing

 		
 Installing

 		
 Updating

 		
 Removing

 		
 Using the SkillsManager class

 		
 Core components

 		
 Understanding

 		
 Interpreter

 		
 Trainings store

 		
 Handling

 		
 Handlers store

 		
 Metas store

 		
 Translations store

 		
 Conversing

 		
 Agent

 		
 Client

 		
 Settings

 		
 Settings store

 		
 Meta

 		
 Migrating

 		
 From 4.* to 5.0.0

 		
 Access to settings

 		
 Registering without decorators

 		
 Utils

 		
 Testing

 		
 Managing skills from code

_static/up.png

_static/up-pressed.png

